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Abstract. In this paper, we investigate potential symmetries of a simplified model for reacting
mixtures. We find new similarity reductions and wider class of solutions through this approach.
Further, we explore an invertible mapping which linearizes the reacting mixture model.

1. Introduction

For the past two decades group theoretical methods have been applied to solve a wide range of
problems and to explore many physically interesting solutions [1–9] of nonlinear phenomena.
Moreover, in order to arrive at new solutions of partial differential equations (PDEs) which are
not obtainable through the classical Lie algorithm several extensions and modifications of the
original Lie group method have been proposed in different contexts [10].

Recently, Bluman and Kumei introduced another method to find a new class of symmetries
for a PDE system, sayR{t, x,u}, in the case that at least one of the PDEs can be written in a
conserved form [1,11]. If we introduce the potential variablesv, for the PDE systemR{t, x,u}
written in a conserved form, as further unknown functions we obtain another system (auxiliary
system), sayS{t, x,u, v}. After finding the Lie point symmetries of the auxiliary system
S{t, x,u, v} let us suppose that any one of the components, of the infinitesimal operators,
corresponding to the variablest, x andu depends explicitly on the potential variablesv.
Hence these infinitesimal operators are not projectable to the space{t, x,u} and these local
symmetries ofS{t, x,u, v} induce non-local symmetries for the original systemR{t, x,u}.
These kind of non-local symmetries which are neither Lie point nor Lie–Bäcklund symmetries
have been called, by Bluman and Kumei,potential symmetries.

Consequently, intense research has been started to study the concept of potential
symmetries both from the theoretical as well as practical (applications) point of view [11–13].
Concerning the applications of the potential symmetry approach several investigations have
been made to explore new physically interesting solutions which are not obtainable through
Lie point symmetries for certain nonlinear PDEs. For example, Sophocleous has considered
the nonlinear diffusion–convection types of equations and examined potential symmetries and
associated similarity solutions [14]. Similarly, Gandarias has carried out a detailed analysis
on the potential symmetries of a porous medium equation and constructed some interesting
new solutions [15].
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406 M Senthilvelan and M Torrisi

For our purposes it is worth noticing that a potential symmetry of the systemR{t, x,u} is
a point symmetry of the systemS{t, x,u, v} so one can extend the uses of point symmetries
to the potential symmetries. In particular:

(i) Invariant solutions ofS{t, x,u, v} give solutions ofR{t, x,u}. These solutions, of course,
are not invariant solutions for any local symmetry admitted byR{t, x,u}.

(ii) If S{t, x,u, v} is linearizable thenR{t, x,u} is also linearizable. Concerning this last
point we stress that quite often when a potential symmetry exists its infinitesimal operator
is infinite-dimensional and allows one to linearize the system, whereas the Lie algebra of
R{t, x,u} is finite-dimensional.

Motivated by the above facts, in this paper, we wish to study the potential symmetries and
look for new solutions of the following simplified model for a binary unimolecular reacting
exothermic mixture

ut +

(
u2

2
− αq

)
x

− βuxx = 0

qx = γ qf (u)
(1.1)

whereu is a lumped variable with some features of pressure or temperature,q is the mass
fraction of the reactant,α > 0 is the heat released by the reaction,β is a lumped diffusion
coefficient, γ is the reaction rate andf (u) > 0 is a structure function derived through
asymptotic considerations. The coordinate,x, is not a spatial coordinate but a generalized
coordinate representing a spacetime of the reaction zone.

The system (1.1) is the specialization to the one-dimensional case of model equations
derived by Rosales and Majda [16] (see also [17] and references therein) by a systematic
application of the method of multiple scaling and matched asymptotic expansions to the Navier–
Stokes equation for a unimolecular exothermic reacting mixture. The success of this model and
of similar simplified qualitative models rests on their ability to produce in a transparent fashion
analogues of the complex phenomena which they model. The Navier–Stokes equations, for
a reacting mixture, involve many peculiar effects produced through the nonlinear interaction
of chemical and fluid mechanical phenomena. This model is motivated by an attempt to
understand the interactions of strongly nonlinear sound waves, chemistry, and diffusion.

However, as far as we know, there are no studies concerning the search for exact analytical
solutions, although some attempts have been undertaken to get numerical solutions in some
special cases (see, e.g., [18]). Only recently, the invariance properties of equation (1.1) under
a one-parameter Lie group of infinitesimal transformations have been studied by Rigano and
Torrisi [19]. They gave the complete classification with respect to the functionf (u) and
obtained classes of invariant solutions in some cases.

We study, here, the system (1.1) using the potential symmetries approach to look for
new classes of exact solutions. Interestingly, the results of our investigation tell us that the
system (1.1) admits potential symmetries for a particular choice off (u). Furthermore, we
show that it is only under the existence of potential symmetries that the similarity reduced
ordinary differential equations (ODEs) take a linear form whereas under the usual Lie point
symmetries the reduced ODEs turn out to be nonlinear. Using the symmetries for this particular
choice off (u) we unearth an explicit transformation which linearizes the system (1.1).

The plan of the paper is as follows. In section 2 we study the potential symmetries for
the reacting mixture model. In section 3 we investigate similarity reductions and explore new
solutions. In section 4 we show additional point symmetries for the system (1.1). In section 5,
we present the invertible mapping and linearize the reaction mixture model. Finally, we present
the conclusions in section 6.
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2. Potential symmetries

To determine the potential symmetries of equations (1.1) let us rewrite them in a potential form
so that

vx = u
vt = −u

2

2
+ αq + βux

qx = γ qf (u).
(2.1)

The invariance of equation (2.1) under the one-parameter Lie group of infinitesimal
transformations,

x −→ X = x + εξ1(t, x, u, v, q)

t −→ T = t + εξ2(t, x, u, v, q)

u −→ U = u + εφ1(t, x, u, v, q)

v −→ V = v + εφ2(t, x, u, v, q)

q −→ Q = q + εφ3(t, x, u, v, q) ε � 1

(2.2)

leads, by applying the well known techniques (see [1–9]), to the following results:

ξ1 = b1(t) +
ȧ(t)

2
x ξ2 = a(t)

φ1 = c1x(t, x)e
v

2β +
ä(t)

2
x + ḃ1(t) +

[
c1(t, x)

2β
e

v
2β − ȧ(t)

2

]
u

φ2 = c1(t, x)e
v

2β +
ä(t)

4
x2 + ḃ1(t)x + e1(t)

φ3 = 1

α
[c1t (t, x)− βc1xx(t, x)]e

v
2β +

...
a (t)

4α
x2 +

b̈1(t)

α
x

+
ė1(t)

α
− βä(t)

2α
+

[
c1(t, x)

2β
e

v
2β − ȧ(t)

]
q

(2.3)

provided thatξ1, ξ2, φ1, φ3, satisfy identically the following classifying condition:

φ3x + uφ3v + γ qf (u)(φ3q − ξ1x − uξ1v)− γf (u)φ3− γ qf ′(u)φ1 = 0. (2.4)

In equations (2.3)a, b1, e1 are arbitrary functions oft andc1 is an arbitrary function of the
variablest andx. Moreover in equations (2.3) and equations (2.4) subscripts denote the partial
derivatives with respect to the variablex, t , v andq respectively and the dots denote the total
derivatives with respect tot .

At this point we wish to recall that a Lie point symmetry of equations (2.1) is said to
be a potential symmetry of the original system, equations (1.1), only if at least one of the
infinitesimal componentsξ1, ξ2, φ1, φ3 admits explicitly the potential variablev. Since our
aim is to find thepotential symmetriesfor equations (1.1) we try to explore the form off (u)
such that the functionc1(t, x) in the infinitesimals is non-zero. By keeping this idea in mind
and inserting equations (2.3) in equation (2.4) we find that only for the form of

f (u) = u

2βγ
+ k (2.5)
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with k arbitrary constant, does the system (2.1) admit potential symmetries with non-zero form
for c1(t, x). The associated infinitesimal symmetries for the above form off (u) turn out to be

ξ1 = b1− kβγ a1t +
a1

2
x ξ2 = a0 + a1t

φ1 = c1x(t, x)e
v

2β +

[
1

2β
c1(t, x)e

v
2β − a1

2

]
u− kβγ a1

φ2 = c1(t, x)e
v

2β + c2 − kβγ a1x

φ3 = 1

α
χ(t)e

v
2β +kγ x +

[
1

2β
c1(t, x)e

v
2β − a1

]
q

(2.6)

where a0, a1, b1, c2 are arbitrary constants andc1(t, x) is a solution of the following
inhomogeneous linear heat equation:

c1t (t, x)− βc1xx(t, x) = χ(t)ekγ x (2.7)

with χ(t) an arbitrary function oft .
The associated Lie algebra is infinite-dimensional and it is spanned by

X1 = ∂x X2 = ∂t X3 = ∂v
X4 = (x − 2kβγ t)∂x + 2t∂t − (u + 2kβγ )∂u − 2kβγ x∂v − 2q∂q

Xc1(t,x) =
[
c1x(t, x) +

u

2β
c1(t, x)

]
e

v
2β ∂u + c1(t, x)e

v
2β ∂v +

q

2β
c1(t, x)e

v
2β ∂q

Xχ(t) = 1

α
χ(t)e

v
2β +kγ x

∂q .

(2.8)

The infinitesimal operatorsX1,X2,X3,X4 are projectable to the space{t, x, u, q} and are the
point symmetries of system (1.1). The infinitesimal operatorsXc1(t,x) andXχ(t) are not
projectable. They are the infinitesimal operators of the desired potential symmetries and
generate an infinite-parameter group (subgroup) of transformations.

3. Similarity reductions

In this section we investigate similarity reductions associated with the infinitesimal
symmetries (2.6). The characteristic equations associated with the infinitesimal symmetries
can be written as

dx

b1− kβγ a1t + a1
2 x
= dt

a0 + a1t

= du

c1x(t, x)e
v

2β +
[

1
2β c1(t, x)e

v
2β − a1

2

]
u− kβγ a1

= dv

c1(t, x)e
v

2β + c2 − kβγ a1x

= dq
1
α
χ(t)e

v
2β +kγ x +

[
1

2β c1(t, x)e
v

2β − a1

]
q
. (3.1)

We solve equations (3.1) for the following two different cases.
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Case 1:a1 = 0. In this case we get the similarity variables of the form (witha0 = 1, for
simplicity)

z = x − b1t

w1 = u
[
w2 − 1

2β

∫
c̄1(t, z)e

c2t
2β dt

]
−
∫
c1z(t, z)e

c2t
2β dt

w2 = 1

2β

∫
c̄1(t, z)e

c2t
2β dt + e

(c2t−v)
2β

w3 = q
[
w2 − 1

2β

∫
c̄1(t, z)e

c2t
2β dt

]
− 1

α

∫
χ(t)eγ kx+ c2t

2β dt

(3.2)

where c1 is a solution of equation (2.7) along characteristic lines. Under this similarity
transformation equation (2.1) can be reduced to the following system of ODEs:

2βw′2 +w1 = 0 (3.3a)

2βb1w
′
2 − βw′1 + c2w2 − αw3 = 0 (3.3b)

w′3− kγw3 = 0 (3.3c)

where prime denotes differentiation with respect toz.

Case 2:a1 6= 0. In this case because of the complexity of the calculations we work with a
special class of solutions of equation (2.7):

c1(t, x) =
[
eβγ

2k2t

∫
χ(t)e−βγ

2k2t dt + I1eβγ
2k2t

]
eγ kx (3.4)

whereI1 is an integration constant. Substituting this form in the characteristic equation (3.1)
we get the similarity variables of the form

z = x

(a0 + a1t)(1/2)
+

2(b1 + kβγ a0)

a1(a0 + a1t)(1/2)
+

2kβγ (a0 + a1t)
(1/2)

a1

w1 = 2β(u + 2kβγ )(a0 + a1t)
1
2

[
w2 − e

−2kγ (b1+2kβγ a0)
a1

2β

∫
[I1 +G(t)](a0 + a1t)

A−1dt

]
w2 = (a0 + a1t)

Ae(k
2βγ 2t−kγ z(a0+a1t)

(1/2)− v
2β )

+
e
−2kγ (b1+2kβγ a0)

a1

2β

∫
[I1 +G(t)](a0 + a1t)

A−1dt

w3 = 2β(a0 + a1t)

[
w2 −

e−2kγ (b1+2kβγ a0)

a1

2β

∫
[I1 +G(t)](a0 + a1t)

A−1dt

]
q

−2β

α
e
−2kγ (b1+2kβγ a0)

a1

∫
Ġ(t)(a0 + a1t)

A dt

(3.5)

where

G(t) =
∫
χ(t)e−βγ

2k2t dt A = c2 + 2kβγ (b1 + kβγ a0)

2βa1
. (3.6)

Using the similarity transformations (3.5) one can rewrite equation (2.1) to obtain

4β2w′2 +w1 = 0 (3.7a)

zw′2 −
1

2βa1
w′1 + 2Aw2 − α

2β2a1
w3 = 0 (3.7b)

w′3 = 0 (3.7c)
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where prime denotes differentiation with respect to the variablez.
It is interesting to note that in both the casesa1 = 0 (see equation (3.3)) anda1 6= 0 (see

equation (3.7)) the reduced ODE system is a linear one.

3.1. New solutions

In this section we present new solutions associated with the reacting mixtures model (1.1)
considering the different subcases from the previous section.

Case 1:a1 = 0. Solving equation (3.3) we get a solution of the form

w1 = −2β

[
m1I2em1z +m2I3em2z +

αI4γ k

(c2 + 2γ 2k2β2 − 2b1βγ k)
eγ kz

]
w2 = I2em1z + I3em2z +

αI4

(c2 + 2γ 2k2β2 − 2b1βγ k)
eγ kz

w3 = I4eγ kz

(3.8)

whereI2, I3 andI4 are integration constants whilem1 andm2 are solutions of the algebraic
equation

βm2 + b1m +
c2

2β
= 0. (3.9)

Rewriting (3.8) in terms of the old variables we get a solution of the form

u =
∫
c1x(t, x)e

c2t
2β dt

H(t, x)
− 2β

H(t, x)

[
m1I2em1(x−b1t) +m2I3em2(x−b1t)

+
αI4γ keγ k(x−b1t)

(c2 + 2γ 2k2β2 − 2b1βγ k)

]

v = log

[
e
c2t
2β

H(t, x)

]2β

q = eγ kx
∫
χ(t)e

c2t
2β dt

αH(t, x)
+
I4eγ k(x−b1t)

H(t, x)

(3.10)

where

H(t, x) = I2em1(x−b1t) + I3em2(x−b1t) +
αI4eγ k(x−b1t)

(c2 + 2γ 2k2β2 − 2b1βγ k)

− 1

2β

∫
c1(t, x)e

c2t
2β dt. (3.11)

It is easy to verify that the functionsu andq given by (3.10) are solutions of the system (1.1).
The presence of a solutionc1(t, x) of equation (2.7) in (3.10) gives us more possibilities

to satisfy, quite general, suitable auxiliary (i.e. initial or boundary) conditions. In other words,
by appropriately choosing the form forc1(t, x) and the arbitrary constants, one could get some
physically interesting solutions for the reacting mixtures model (1.1).

Case 2:a1 6= 0. Solving equation (3.7c) we getw3 = constant= I5. However, to investigate
the nature of solutions we proceed with the two cases, that is,A = 0 andA 6= 0.
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Subcase 2(a):A = 0. In this case, from (3.7b), we get,

w′1 +

(
a1z

2β

)
w1 +

αI5

β
= 0. (3.12)

A general solution for equation (3.12) can be written as

w1 = −αI5
β

e(
−a1z2

4β )

∫
e(

a1z
2

4β ) dz + I6e(
−a1z2

4β ) (3.13)

whereI6 is an integration constant. By using equation (3.7a), we get

w2 = αI5

4β3

∫
e(
−a1z2

4β )

(∫
e(

a1z
2

4β ) dz

)
dz− I6

4β2

∫
e(
−a1z2

4β ) dz + I7 (3.14)

whereI7 is an integration constant. Substituting the expressions forw1, w2 andw3 in the
equations (3.5) one gets

u = P(x, t)

2β(a0 + a1t)(1/2)Q(x, t)
− 2kβγ

v = log

[
e(k

2βγ 2t−kγ z(a0+a1t)
(1/2))

Q(x, t)

]2β

q = I5

2β(a0 + a1t)Q(x, t)
+

e
−2kγ (b1+2kβγ a0)

a1
∫
χ(t)e−βγ

2k2t dt

α(a0 + a1t)Q(x, t)

(3.15)

where

P(x, t) = I6e(
−a1z2

4β ) − αI5
β

e(
−a1z2

4β )

∫
e(

a1z
2

4β ) dz (3.16a)

Q(x, t) = αI5

4β3

∫
e(
−a1z2

4β )

(∫
e(

a1z
2

4β ) dz

)
dz− I6

4β2

∫
e(
−a1z2

4β ) dz + I7

−e
−2kγ (b1+2kβγ a0)

a1

2β

∫
(I1 +G(t))(a0 + a1t)

−1 dt (3.16b)

and

z = x

(a0 + a1t)(1/2)
+

2(b1 + kβγ a0)

a1(a0 + a1t)(1/2)
+

2kβγ (a0 + a1t)
(1/2)

a1
. (3.16c)

Sub-case 2(b):A 6= 0. Substitutingw3 = I5 along with equation (3.7a) in equation (3.7b)
we get a second-order linear ODE for the variablew2:

w′′2 +
a1

2β
zw′2 +

Aa1

β
w2 − αI5

4β3
= 0. (3.17)

By rescaling

w2 = αI5

4β2a1A
+ w̄2 (3.18)

equation (3.17) can be written as

w̄′′2 +
a1

2β
zw̄′2 +

Aa1

β
w̄2 = 0. (3.19)

By introducing a transformation

w̄2(z) = y(s) s = −a1z
2

4β
(3.20)
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equation (3.19) can be brought into the form

sy ′′ + ( 1
2 − s)y ′ − Ay = 0. (3.21)

A general solution for the equation (3.21) can be written as [20]

y = I8 1F1(A,
1
2; s) + I9s

(1/2)
1F1(A + 1

2,
3
2; s) (3.22)

where I8, I9 are integration constants and1F1(A,
1
2; s) is a confluent hypergeometric

function [21]. Using equation (3.20) we can write down the solution forw̄2 as

w̄2(z) = I8 1F1

(
A,

1

2
;
(−a1z

2

4β

))
+ I9

(−a1z
2

4β

)(1/2)
1F1

(
A +

1

2
,

3

2
;
(−a1z

2

4β

))
(3.23)

so thatw2 becomes

w2 = αI5

4β2a1A
+ I8 1F1

(
A,

1

2
;
(−a1z

2

4β

))
+ I9

(−a1z
2

4β

)(1/2)
1F1

(
A +

1

2
,

3

2
;
(−a1z

2

4β

))
(3.24)

andw1 takes the form

w1 = −4β2

[
AI8 1F1

(
A + 1,

3

2
;
(−a1z

2

4β

))
+
(2A + 1)

6
I9

(−a1z
2

4β

)(1/2)
1F1

(
A +

3

2
,

5

2
;
(−a1z

2

4β

))]
. (3.25)

Using the relation (3.24) and (3.25) the solution for the equations (1.1) can be written as

u = −2kβγ − 2βR(x, t)

(a0 + a1t)(1/2)S(x, t)

v = log

[
(a0 + a1t)

Ae(k
2βγ 2t−kγ z(a0+a1t)

(1/2))

S(x, t)

]2β

q = I5

2β(a0 + a1t)S(x, t)
+

∫
Ġ(t)(a0 + a1t)

A dt

α(a0 + a1t)e
(

2kγ (b1+2kβγ a0)
a1

)
S(x, t)

(3.26)

where,

R(x, t) = AI8 1F1

(
A + 1,

3

2
;
(−a1z

2

4β

))
+
(2A + 1)

6
I9

(−a1z
2

4β

)(1/2)
1F1

(
A +

3

2
,

5

2
;
(−a1z

2

4β

))
S(x, t) = αI5

4β2a1A
+ I8 1F1

(
A,

1

2
;
(−a1z

2

4β

))
+I9

(−a1z
2

4β

)(1/2)
1F1

(
A +

1

2
,

3

2
;
(−a1z

2

4β

))

−e(
−2kγ (b1+2kβγ a0)

a1
)

2β

∫
(I1 +G(t))(a0 + a1t)

A−1 dt

(3.27)

with

z = x

(a0 + a1t)(1/2)
+

2(b1 + kβγ a0)

a1(a0 + a1t)(1/2)
+

2kβγ (a0 + a1t)
(1/2)

a1
. (3.28)

In this subcase the presence of the arbitrary functionχ(t) adds more possibilities in satisfying
suitable boundary conditions.

One can also carry out other subcases by assuming some of the other arbitrary constants in
the infinitesimal symmetries (2.6) to be zero. However, they do not lead to any new similarity
reductions.
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4. Other point symmetries for the system (2.1)

In the previous two sections we have focused our attention on the determination of potential
symmetries and the exploitation of new solutions for the simplified reacting mixture model.
In this section, for sake of completeness, we wish to mention the existence of further point
symmetries and related similarity reductions for the system (2.1) corresponding to the following
forms off (u).
(1) f (u) = constant= f0. In this case the point symmetries turn out to be

ξ1 = e1t + e2 ξ2 = a1 φ1 = e1 φ2 = e1x + e3 φ3 = 0. (4.1)

The similarity variables are

z = x − e2

a1
t − e1

2a1
t2 w1 = u− e1

a1
t

w2 = v − e2
1

6a2
1

t3− e1e2

2a2
1

t2 − e1

a1
zt − e3

a1
t w3 = q.

(4.2)

The associated reduced ODE system takes the form

a1w
′
2 − w1 = 0

e2w
′
2 + βa1w

′
1−

a1w
2
1

2
+ a1αw3− e1z− e3 = 0

w′3− f0γw3 = 0.

(4.3)

(2) f (u) = an arbitrary function. In this case the point symmetries turn out to be

ξ1 = b1 ξ2 = a1 φ1 = 0 φ2 = e1 φ3 = 0. (4.4)

The similarity variables are (witha1 = 1)

z = x − b1t w1 = u w2 = v − e1t w3 = q. (4.5)

The associated reduced ODE system takes the form

w′2 − w1 = 0

w′2 +
β

b1
w′1−

w2
1

2b1
+
αw3

b1
− e1

b1
= 0

w′3− γw3f (w1) = 0

(4.6)

wheref (w1) is an arbitrary function ofw1.
In both cases the symmetries obtained are trivially projectable in the space{t, x, u, q} and

coincide with those of the earlier analysis made in [19]. Finally, we wish to mention that only
for the case in which the system admits potential symmetry the reduced ODE system turns out
to be linear (see equations (3.3) and equation (3.7)).

5. Linearization of the system (2.1)

One of the main motivations to use the potential symmetry approach for a given system is to
find transformations which linearize the given nonlinear system. In this section, by employing
the ideas given in [1] (theorem 6.4.1-1, p 320), we explore a transformation which linearizes the
system (2.1). The aforementioned theorem gives a necessary and sufficient condition for the
existence of an invertible mapping which linearizes a system admitting an infinite-parameter
Lie group of transformations.

In our case, the infinitesimal operator generating the infinite parameter group of
transformations is

X̂ =
[
u

2β
c1(t, x) + c1x(t, x)

]
e

v
2β ∂u + c1(t, x)e

v
2β ∂v +

[
q

2β
c1(t, x)e

v
2β +

1

α
χ(t)e

v
2β +kγ x

]
∂q.
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By following the algorithm given in [1] we are able to find the following overdetermined
PDE system for the unknown8:

u

2β
8u +8v +

q

2β
8q = 0 8u = 0 8q = 0 (5.1)

of which two independent solutions,z1 andz2, can be chosen as new independent variables.
We choose

z1 = t z2 = x. (5.2)

The transformation for the remaining coordinates can be obtained from the solutions of the
following system:

e
v

2β

(
u

2β
ψ1u +ψ1v +

q

2β
ψ1q

)
= 1 ψ1u = 0 ψ1q = 0 (5.3a)

u

2β
ψ2u +ψ2v +

q

2β
ψ2q = 0 e

v
2β ψ2u = 1 ψ2q = 0 (5.3b)

u

2β
ψ3u +ψ3v +

q

2β
ψ3q = 0 ψ3u = 0

ekγ x+ v
2β

α
ψ3q = 1. (5.3c)

Particular independent solutions of equations (5.3) can be easily found to be

ψ1 = −2βe−
v

2β ψ2 = ue−
v

2β ψ3 = αqe−
v

2β +kγ x
. (5.4)

As a consequence we obtain a transformation of the form

z1 = t z2 = x ψ1 = −2βe−
v

2β

ψ2 = ue−
v

2β ψ3 = αqe−
v

2β +kγ x
.

(5.5)

Substituting the above transformation (5.5) into the nonlinear equation (2.1) withf (u) given
in equation (2.5) one gets a linear equation of the form

ψ1z2 − ψ2 = 0

ψ1z1 − βψ2z2 − ekγ z2ψ3 = 0

ψ3z2 = 0.

(5.6)

It is a simple matter to verify that, as a consequence, the system (1.1) is linearized.
It is worthwhile noticing that it is possible to reduce the system (5.6) to the following

linear second-order PDE:

ψ1t (t, x)− βψ1xx(t, x) = µ(t)ekγ x (5.7)

where we have taken (5.2) into acount andµ(t) is an arbitrary function oft .

6. Conclusions

In this paper we have carried out a detailed group theoretical analysis of a simplified nonlinear
model for a binary reacting unimolecular mixture using the potential symmetries approach.
A detailed investigations of the non-potential symmetries has been carried out in [19]. The
potential symmetries which we have found here allow us to determine new wide classes of
exact solutions. They may serve, as usual, for a benchmark test of a large numerical scheme
devised to solve the system in a realistic case. However, for the classes of solutions found in the
previous sections, the presence of arbitrary functions enlarge to the large extent the possibility
to find solutions satisfying realistic initial or boundary conditions. Finally, taking into account
that the auxiliary system (2.1) admits an infinite parameter Lie group of transformations we
linearize the system following the algorithm suggested by Bluman and Kumei. This result is
very useful for a qualitative analysis of system (1.1).
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